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Biomolecular machines consume free energy to break symmetry
and make directed progress. Nonequilibrium ATP concentrations
are the typical free energy source, with one cycle of a molecu-
lar machine consuming a certain number of ATP, providing a fixed
free energy budget. Since evolution is expected to favor rapid-
turnover machines that operate efficiently, we investigate how
this free energy budget can be allocated to maximize flux. Uncon-
strained optimization eliminates intermediate metastable states,
indicating that flux is enhanced in molecular machines with fewer
states. When maintaining a set number of states, we show that—
in contrast to previous findings—the flux-maximizing allocation
of dissipation is not even. This result is consistent with the coex-
istence of both “irreversible” and reversible transitions in molecu-
lar machine models that successfully describe experimental data,
which suggests that, in evolved machines, different transitions
differ significantly in their dissipation.

molecular machines | nonequilibrium steady state | dissipation

B iomolecular machines, typically composed of protein com-
plexes, perform many roles inside cells, including cargo

transport and energy conversion (1). These microscopic ma-
chines operate stochastically (2) but must, on average, make for-
ward progress to fulfill their cellular roles, a functional require-
ment that, according to the Second Law, imposes a free energy
cost (3).

Biomolecular machines typically make use of the free energy
stored in nonequilibrium chemical concentrations, which are,
in turn, maintained by other cellular machinery (4). The free
energy consumed over a forward machine cycle equals the free
energy difference between the chemical reactants and products
(5), which sets the maximum available dissipation “budget” for
a cycle.

Theoretical studies have found that, under a variety of cri-
teria, an even allocation of dissipation across all transitions
in a machine cycle is optimal (6–15). However, many models
parametrized to experimental biomolecular machine dynamics
contain effectively irreversible transitions (16–22), suggesting
that some transitions dissipate a large amount of free energy
compared with the “reversible” transitions in the same cycle.

The dissipation allocation generally affects the probability
flux (also known as the current) through a molecular machine
cycle (23). Flux reports on the machine output and thus is
an important operating characteristic; indeed, the dependence
of flux on alternative energy landscapes was recently pro-
posed to explain the ubiquity of the rotary mechanism of ATP
synthase (13).

We approximate molecular machine dynamics with stochas-
tic transitions between discrete states (1, 24) and examine how
a fixed free energy dissipation budget should be allocated to a
cycle’s individual transitions to achieve maximal flux. We find
that, without additional constraints, maximizing the flux effec-
tively eliminates the free energy wells representing intermediate
metastable states. When constrained to maintain a set number
of intermediate metastable states, our central result is that flux
is maximized when dissipation is unevenly allocated among the
distinct cycle transitions.

Our result is consistent with the presence in the same cycle
of both reversible and effectively irreversible transitions and the
substantially different implied dissipations (16–22). This suggests
that understanding how forward progress is affected by a dis-
sipation allocation may be useful for evaluating the design of
biomolecular machines. Adjustment of the dissipation allocation
of a biomolecular machine may be relatively easy to parsimo-
niously achieve compared with broad-reaching changes, such as
to the fuel source or to the free energy of ATP hydrolysis.

Models
Discrete States. We consider two- and three-state cycles (Fig. 1),
which have frequently been used to model driven in vivo
systems, such as myosin (25), kinesin (16), phosphorylation–
dephosphorylation cycles (26), the canonical Michaelis–Menten
scheme (5), and various specific enzymes (26, 27). For the two-
state Michaelis–Menten scheme (5), the first transition binds the
substrate, while the second catalyzes the reaction of substrate to
product, releases the product, and returns the enzyme to its origi-
nal state. For a three-state kinesin model (16), the first transition
binds ATP to the microtubule-bound head, the second steps the
free head forward to bind the microtubule and release ADP, and
the third hydrolyzes ATP and unbinds the newly rear head from
the microtubule.

In our model cycle, for every forward rate constant k+
ij describ-

ing transitions from state i to state j , there is a nonzero reverse
rate constant k−ij describing transitions from state j to state i .
Although some models of molecular machines describe certain
transitions as “irreversible,” with a reverse rate of zero, this vio-
lates the principle of microscopic reversibility (23, 28).

A transition from state i to state j occurs at the forward rate
k+
ij Pi , with Pi being the probability in state i . Reverse transitions
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Fig. 1. Small discrete-state cycles. (A) Two-state and (B) three-state cycles.
Forward (clockwise; green) and reverse (counterclockwise; red) transitions
occur along each pathway connecting two states, with rate constants k+

ij

and k−ij , respectively.

from state j to state i occur at rate k−ij Pj . (Note that the two-state
cycle has both pathway 12 and pathway 21, representing distin-
guishable physical transition mechanisms, each with a forward
direction and a reverse direction.)

Typically, cellular cycles are driven by nonequilibrium concen-
trations of reacting chemical species, most prominently ATP,
ADP, and inorganic phosphate (Pi) (5). The free energy ∆G
provided by ATP hydrolysis depends on the respective concen-
trations (5),

∆G = ∆G0 + kBT ln
[ADP][Pi]

[ATP]
, [1]

where ∆G0≡−kBT ln
(

[ADP]eq[Pi]eq/[ATP]eq

)
, kB is Boltz-

mann’s constant, and T is the temperature of the surrounding
environment. Under physiological conditions, hydrolysis of ATP
to ADP and Pi provides free energy |∆G| ∼ 20kBT (5). From
here on, we set kBT = 1—all free energies are in units of the
thermal energy scale.

The ratio between the forward and reverse rate constants of
a given transition path is fixed by its free energy dissipation ωij

(29, 30):

ωij = ln
k+
ij

k−ij
. [2]

(Additional information is in SI Appendix.) Without a bias ωij ,
the full forward and reverse rate constants k+/−

ij equal the “bare”
rate constants k0

ij .

Free Energy Landscape. A discrete-state kinetic model of a
machine cycle can also be equivalently represented by Arrhe-
nius dynamics on a free energy landscape, with each free energy
well representing a discrete state and the free energy differences
between barriers (at energies E ‡ij ) and states (at energies Ei)
determining the rate constants:

k+
ij = τ−1

ij e−(E
‡
ij−Ei ) and k−ij = τ−1

ij e−(E
‡
ij−Ej ), [3]

with τij being a timescale accounting for effective diffusivity. The
free energy budget ωtot fixes the free energy difference between
equivalent molecular machine states separated by one cycle. For
example, Fig. 2 represents a two-state cycle, with dissipations
ω12 = E1 − E2 and ω21 = E2 − (E1 − ωtot).

The bare rates k0
ij are the rates in the absence of chemical driv-

ing. We restrict our attention to wells at equal free energy with-
out chemical driving, and therefore, forward and reverse bare
rates of a given transition are equal. We allow bare rates to
vary among the different transitions to account for differences
in barrier heights, effective diffusivity, and all other dissipation-
independent factors.

Results
We maximize the steady-state flux by allocating a fixed free
energy budget ωtot among the free energy differences ωij

between discrete states (i.e., dissipation over discrete transitions)
that determines the full rate constants k

+/−
ij and hence the net

steady-state flux J (from here on, the flux), which for a two-state
cycle, is (31)

J =
k+
12k

+
21 − k−12k

−
21

k+
12 + k−12 + k+

21 + k−21
. [4]

We first consider freely varying E2, E ‡12, and E ‡21 (Fig. 2).
When barriers are higher than states, decreasing the barrier
energies always increases flux:

∂J

∂E ‡12
< 0 and

∂J

∂E ‡21
< 0. [5]

(Details are in SI Appendix.) Flux is maximized when the “bar-
riers” are at or below the states and thus are no longer act-
ing as barriers. This is an intuitive result that, all else equal,
faster transitions (because of lowered barriers) produce a higher
flux (29).

Increasing E2 is equivalent to decreasing the dissipation ω12,
increasing ω21, and vice versa. For fixed barrier energies E ‡12 and
E ‡21, flux is maximized by increasing E2 above the free energy
of one of the barriers, effectively producing a one-state cycle (SI
Appendix).

Transition rates are reduced by energetic barriers, and there-
fore, flux is maximized by removing barriers and reducing the
number of metastable states. However, a greater number of
metastable states, each representing a persistent conformation
or ligand binding status of a biomolecular machine, make possi-
ble a larger array of schemes for the following: interaction, such
as distinct binding affinities (32); machine operation, such as
“gating” (33); and regulation through variable action on distinct
states (34).

Multiple metastable states can be maintained by constraining
the free energy landscape to preserve barriers. We implement
these constraints by fixing the free energy differences between
wells and either the barriers immediately before or immediately
after them, equivalent to fixing the rate constants between dis-
crete states for either the forward or reverse transitions. A for-
ward labile (FL) scheme (case A in ref. 35) keeps the reverse free
energy differences fixed, with the dissipation ωij only modifying
the forward rate constant:

k+
ij = k0

ij e
ωij and k−ij = k0

ij ; [6]

however, for a reverse labile (RL) scheme (case B in ref. 35), the
dissipation only modifies the reverse rate constant:

Fig. 2. Free energy landscape representing a two-state molecular machine.
The leftmost state (at free energy E1) and the rightmost state (E1 − ωtot)
represent the same stage of molecular machine operation separated by one
complete cycle. The middle state (E2) represents an intermediate state, while
E‡12 and E‡21 are the free energies of barriers between the states. ω12 and ω21

are the dissipations for each transition, which sum to ωtot, the dissipation
budget for one cycle.
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k+
ij = k0

ij and k−ij = k0
ij e
−ωij . [7]

For the free energy landscape of Fig. 2, the FL scheme has fixed
E ‡12 − E2 and E ‡21 − (E1 − ωtot), while the RL scheme has fixed
E ‡12 − E1 and E ‡21 − E2.

“Labile” here denotes the direction in which rate constants
change with dissipation. This dependence of forward or reverse
rate constants on dissipation for the FL and RL schemes, respec-
tively, is analogous to their dependence on the work performed
by a motor in a “power stroke” or “Brownian ratchet” (29).

FL Scheme.
Two-state cycle. For a two-state FL cycle (Fig. 1A) with fixed
total cycle dissipation ωtot = ω12 +ω21, flux (Eq. 4) is maximized
when the free energy dissipation of the first transition is

ω∗12 =
1

2
ωtot +

1

2
ln

k0
21

k0
12

. [8]

This produces equal forward rate constants,

k+
ij =

√
k0
12k

0
21 e

ωtot
2 , [9]

equal to the geometric mean of any full rate constants k+
12 and

k+
21 consistent with the bare rate constants k0

ij and total dissipa-
tion ωtot.

The optimal allocation of total dissipation ωtot differs from
the “näıve” allocation 1

2
ωtot that evenly divides the dissi-

pation among the transitions. More specifically, the optimal
deviation from the naive allocation is ∆ω∗12≡ω∗12− 1

2
ωtot =

1
2

ln(k0
21/k

0
12). The optimal allocation compensates for variation

in bare rate constants, and therefore, for FL, transitions with
larger k0

ij are optimally allocated less dissipation. In fact, the opti-
mal allocation of dissipation to one transition is negative when
| ln(k0

21/k
0
12)| > ωtot.

Three-state cycle. For a three-state cycle (Fig. 1B), the flux is (31)

J =
k+
12k

+
23k

+
31 − k−12k

−
23k
−
31(

k+
12k
−
23 + k−12k

−
23 + k−23k

−
31 + k+

12k
+
31 + k−12k

+
31

+k−12k
−
31 + k+

12k
+
23 + k+

23k
+
31 + k+

23k
−
31

) . [10]

For FL, Fig. 3 shows the numerically determined allocation of
free energy dissipation that maximizes the flux subject to a fixed
ωtot =ω12 + ω23 + ω31 and fixed second and third bare rate
constants k0

23 = k0
31 = 1 for several different k0

12 across multiple
orders of magnitude (27). When k0

12 = 1, the ω∗ij all equal the
naive value 1

3
ωtot as expected by symmetry. As k0

12 increases, the
optimal allocations ω∗ij depart from the naive case, with the dis-
sipation ω∗12 of the first transition decreasing and that of the sec-
ond and third transitions (ω∗23 and ω∗31) increasing.

At high ωtot, the reverse flux is much smaller than the for-
ward flux, Jij−= k−ij Pj � k+

ij Pi = Jij+, and hence, the net flux
roughly equals the forward flux, J = Jij+ − Jij− ' Jij+. In this
limit, the cycle effectively only has forward transitions, leading
(SI Appendix) to an optimal dissipation allocation

∆ω∗12 =
1

3
ln

k0
23k

0
31

(k0
12)2

[11]

that is independent of ωtot. Similar expressions for ∆ω∗23 and
∆ω∗31 are found by cyclically permuting the indices in Eq. 11.
These asymptotic values (Fig. 3, circles on the right edge) are
indistinguishable from the limits of the numerical calculations.
This optimal dissipation allocation produces equal forward rate
constants

k+
ij = k0

ij e
ωij = (k0

12k
0
23k

0
31e

ωtot )
1
3 [12]

that are the geometric mean of any full rate constants k+
12, k+

23,
and k+

31, consistent with k0
ij and ωtot.

Fig. 3. Uneven allocation of dissipation maximizes flux in a three-state FL
cycle. Dissipation allocations ∆ω∗12 (solid curves), ∆ω∗23 (dashed), and ∆ω∗31
(dotted) for the three transitions in Fig. 1B that maximize the flux. Dissipa-
tions are expressed as differences ∆ω∗ij ≡ω∗ij − 1

3 ωtot from the naive alloca-

tion of equal dissipation 1
3 ωtot to each transition. k0

23 = k0
31 = 1 is fixed, and

k0
12 varies with color. When k0

12 = 1 (black), an even allocation of dissipation
to each transition maximizes flux, and therefore, ∆ω∗ij = 0 for all ωtot. As

k0
12 increases (black→ red→ blue→ green), the flux-maximizing allocation

increasingly deviates from an even allocation as shown by the increasing
magnitude of ∆ω∗ij . Allocations at limiting ωtot are shown by circles [low
ωtot plotted at ωtot = 0 (Eq. 11); high ωtot at ωtot =∞ (Eq. 13)]. The vertical
dotted orange line at ωtot = 20 represents the ATP hydrolysis free energy
under physiological conditions.

At low ωtot, when the net flux J = Jij+− Jij− is much
smaller than either the forward or reverse fluxes J� Jij+ and
J� Jij−, the optimal ωij also asymptotically approaches (gen-
erally nonzero) values independent of ωtot. Maximizing the net
flux in Eq. 10 at low ωtot leads (SI Appendix) to an optimal
allocation

ω∗12 =
1

2
ln

k0
31

k0
12

. [13]

Similar expressions for ω∗23 and ω∗31 are found by cyclically per-
muting the indices in Eq. 13. These asymptotic values (Fig. 3, cir-
cles on the left edge) show excellent agreement with the limiting
numerical calculations.

At high total dissipationωtot, the optimal allocationω∗ij reaches
a limit where, for all transitions, the forward rates are much
larger than the reverse rates, becoming effectively irreversible.
For the three-state cycle, the 20 kBT of free energy provided
by ATP hydrolysis is near this limit (Fig. 3). However, not all
transitions will be effectively irreversible for a smaller dissipation
budget per cycle step, which is obtained for machines that per-
form work against a resistive load or machines with more states
per cycle.

The results above show that the optimal allocation of dissi-
pation can significantly differ from an equal allocation to each
transition. Fig. 4 shows the variation of flux as the dissipation
allocation is varied away from the optimal allocation. Exploring
a range of several kBT around the optimal allocation, the flux
varies by more than three orders of magnitude. Thus, a dissipa-
tion allocation significantly different from the optimal one can
qualitatively alter the cycle output.

RL Scheme. For a two-state RL cycle (as opposed to an FL cycle),
the flux-maximizing allocation of dissipation is (SI Appendix)

∆ω∗12 = −1

2
ln

k0
21

k0
12

. [14]

Brown and Sivak PNAS | October 17, 2017 | vol. 114 | no. 42 | 11059

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707534114/-/DCSupplemental/pnas.1707534114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707534114/-/DCSupplemental/pnas.1707534114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707534114/-/DCSupplemental/pnas.1707534114.sapp.pdf


Fig. 4. Flux is sensitive to dissipation allocation. Flux ratio J/J∗ as a function
of the dissipation allocation for the three-state FL cycle with k0

23 = k0
31 = 1

and k0
12 and ωtot varying across subplots. Dissipation allocations are shown

as differences ∆ωij ≡ ωij − 1
3 ωtot from naive values 1

3 ωtot. Optimal flux J∗

is specific to each subplot.

The deviations in Eq. 14 from naive allocations are identical to
the FL result [8], except assigned to the other transition. Despite
this apparent difference, in each state, the probability that the
next transition will move in the forward or reverse direction (and
hence, the ratio of one-sided fluxes) is identical for the optimized
FL and RL cycles. For example, both schemes produce one-sided
fluxes departing from state 1 that satisfy (SI Appendix)

J ∗12+
J ∗21−

=

√
k0
12

k0
21

e
ωtot
2 . [15]

Similarly, for the three-state cycle, both mechanisms allo-
cate dissipation identically, except cyclically permuted (Fig. 5A).
Thus, optimal dissipation allocation in the three-state cycle also
produces one-sided flux ratios that do not depend on the mech-
anism. The limiting optimal allocations at high ωtot are (SI
Appendix)

∆ω∗12 =
1

3
ln

k0
12k

0
31

(k0
23)2

, [16]

and at low ωtot, they are (SI Appendix)

ω∗12 =
1

2
ln

k0
12

k0
23

. [17]

These results are intuitive: an RL scheme can adjust reverse
but not forward rates, and therefore, to maximize the flux, it
allocates more dissipation to decelerate the fastest reverse rates
(those with high k0

ij ); however, an FL scheme can adjust forward
but not reverse rates, and therefore, it allocates more dissipation
to accelerate the slowest forward rates (with low k0

ij ).
Fig. 5B shows the dependence of three-state RL flux on

the dissipation allocation. For low ωtot, the flux varies substan-
tially (by orders of magnitude) across allocations that differ by
a few kBT (similar to FL in Fig. 4), but at high ωtot, there
is little variation of flux with dissipation allocation. The RL
flux is less sensitive to the dissipation allocation at high ωtot,
because after reverse rates are sufficiently suppressed to be
negligible (i.e., for e−ωtot/3� 1), reallocation of dissipation has
reduced effect.

For given bare rates k0
ij and total dissipation ωtot, an FL cycle

will always produce more flux than the corresponding RL cycle,

similar to previous results (29). FL and RL schemes represent
extremes of a more general mechanism, whereby some dissipa-
tion is spent speeding up the forward transitions (as for FL),
and the remaining fraction slows down the reverse transitions (as
for RL):

k+
ij = k0

ij e
ω+
ij and k−ij = k0

ij e
−ω−ij . [18]

This is similar to splitting force dependence among reaction rates
in previous studies (28, 29).

∑
(ω+

ij + ω−ij ) = ωtot is fixed, leav-
ing 2n − 1 free parameters to optimize over in an n-state cycle.
For any given dissipation allocation, flux can always be increased
by shifting some dissipation δω from slowing the reverse rate
to speeding the corresponding forward rate. This is equivalent
to simply lowering the barriers for the free energy landscape
in Fig. 2, which removes the distinction between states as dis-
cussed above.

Discussion
The Second Law of thermodynamics requires free energy dissi-
pation to break detailed balance and maintain directed flux (3)
but does not specify a quantitative relationship between dissipa-
tion and flux (14, 36, 37).

From the perspective of a free energy landscape, we find
that the flux is increased by lowering the barriers, so that they
are no longer effective. This is intuitive, as transition rates are
reduced by energetic barriers, and it suggests that molecular

Fig. 5. Optimal and suboptimal allocations of dissipation for RL scheme.
(A) Allocation of dissipation ωij to maximize flux around the three-state cycle
for FL (green) and RL (purple) schemes. The optimal dissipation values are
identical for the two mechanisms (as illustrated by the overlapping green
and purple curves on the plot); however, the individual dissipations are allo-
cated to different transitions. Circles on the left and right edges show limit-
ing optimal allocations at low (Eq. 17) and high total dissipation ωtot (Eq. 16),
respectively. k0

12 = 10, and k0
23 = k0

31 = 1. (B) Flux sensitivity to dissipation allo-
cation, analogous to Fig. 4, except for RL scheme instead of FL.
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Fig. 6. FL predictions better match experimental dissipation allocations
than do even allocations. Dissipation of transition ω12 in several enzymes
from fit to experiment (black) (27), flux optimization under the FL scheme
(blue), and even allocation (red). Details are in SI Appendix. AP, alkaline
phosphatase; TPI, triose phosphate isomerase.

machines should reduce the number of metastable states to
increase forward flux. However, molecular machines perform
their tasks using multiple metastable states, and accordingly,
we have focused on scenarios that allow distinct states to be
maintained.

In a reaction cycle with a fixed number of discrete states,
we have shown that flux is maximized by an uneven alloca-
tion of a fixed dissipation budget among the various discrete
transitions, compensating for differences in the bare rate con-
stants of each transition (Eqs. 8 and 14 and Figs. 3 and 5A).
This is related to recent findings that flux is affected differ-
ently by adjusting the bare rate of different transitions (29).
The flux can be quite sensitive to the precise dissipation alloca-
tion (Figs. 4 and 5B), suggesting a significant cost to nonoptimal
allocations.

This result differs from the uniform allocations found to be
optimal in various other contexts, including maximizing power
at fixed entropy production rate (6), minimizing entropy pro-
duction at fixed flux (7–9), maximizing free energy conversion
efficiency (10), and minimizing the dissipation cost of a given
precision (14). Several other studies have argued that, to main-
tain a high flux, large free energy increases should be broken
up into smaller pieces, with no individual free energy change
too large (11–13). Even in synthetic molecular motors, it is
thought that similar forward rates are optimal (to avoid “traffic
jams”) (15).

We find that an unequal optimal dissipation allocation occurs
when: the nonequilibrium steady-state flux is maximized; opti-
mization is subject to fixed total dissipation budget per cycle; the
ratio of forward and reverse rate constants varies exponentially,
not linearly, with dissipation (Eq. 2); and cycle transitions have
different bare rate constants, corresponding to different barrier
heights and effective diffusivities. For some previous studies find-
ing even dissipation allocations to be optimal, a single change is
sufficient to make uneven allocations optimal [e.g., imposing dis-
tinct bare rate constants (14) or changing the dependence of flux
on dissipation from linear (the near-equilibrium case) to expo-
nential (8)].

Many models parametrized to biomolecular machine dynam-
ics contain effectively irreversible transitions [e.g., models of
kinesin (16, 17), myosin (18, 19), RNA polymerase (20), and
viral packaging motors (21, 22)]. Such irreversible transitions
are, strictly speaking, unphysical because of their violation of
microscopic reversibility (23, 28); in reality, they represent a for-
ward rate constant much larger than the reverse rate constant,
a signature of large dissipation over that transition. Since other
transitions in these models are reversible, this implies that the
dissipation allocation in such models must be highly unequal,
consistent with the uneven dissipation allocation that we find
maximizes flux.

Other models of driven biomolecular cycles—such as in
myosin (38–40) and several enzymes (27)—lack explicitly irre-
versible transitions but have ratios of forward and reverse rate
constants, and hence, free energy dissipation, that vary signifi-
cantly across the different reactions composing a cycle.

Dissipation biases forward and reverse rate constants, but
there is no unique way to achieve this bias (29, 35). We explored
in detail two extremes for how dissipation can lead to biased
progress: an FL scheme, where dissipation increases forward
rate constants; and an RL scheme, where dissipation decreases
reverse rate constants. Although FL and RL mechanisms lead to
distinct optimal allocations of dissipation, both lead to identical
transition probability ratios from each state (Eq. 15). An FL cycle
produces more flux than a comparable RL cycle, but FL flux is
quite sensitive to the dissipation allocation (Fig. 4), while RL flux
is insensitive to the dissipation allocation for a large free energy
budget (Fig. 5B).

On evolutionary timescales, mutations alter the conforma-
tional free energies of initial and final states differently. For a
transition state conformationally similar to the initial state, a
mutation should produce similar changes in the initial-state and
transition-state free energies, and therefore, the forward rate
should change less than the backward rate. This is analogous
to the distance to the transition state affecting the sensitivity of
unfolding rates to applied force (41). Our FL and RL mech-
anisms thus correspond to a transition state conformationally
similar to the final state and to the initial state, respectively (SI
Appendix, Fig. S1).

Optimizing an FL cycle predicts that transitions with low bare
rate constants will be allocated more dissipation, while for an
RL cycle, high bare rate constants are allocated more dissipa-
tion. Dissipation allocations for several two-state enzyme mod-
els (27) fit to experiment are closely matched by the FL optimal
allocation, generally much better than by an even allocation (Fig.
6) or the RL optimal allocation. SI Appendix has more extensive
comparisons.

We expect that adjusting the dissipation allocation (of a fixed
total dissipation per cycle) would require only isolated changes in
molecular machine dynamics, primarily affecting machine output
or productivity and minimally impacting the rest of the cell. In
contrast, adjusting the dissipation budget (for example, through
the free energy of ATP hydrolysis) would affect numerous driven
processes throughout the cell.

Adjustment of the dissipation allocation through isolated
mutations is supported by experimental findings. Point mutations
in the kinesin-1 nucleotide binding pocket likely affect the dissi-
pation allocation by altering the size of the pocket (42) or the
ADP unbinding rate (43, 44) and lead to significant decreases
in kinesin velocity or ATP hydrolysis rate while remaining func-
tional. Changes in binding affinity caused by mutation [e.g., 2.5-
fold change for a transcription regulator (45) or 40-fold change
for a membrane regulatory protein (46)] correspond to a dif-
ferent unbinding rate, which also would change the dissipation
allocation.

Our optimizations omit several significant biophysical consid-
erations. For example, we allow rate constants to vary without
bound, although practically, they are limited by molecular diffu-
sion. We also focus on a single biomolecular cycle; an interest-
ing extension would be to investigate the effects of alternative
pathways thought to be present in biomolecular machines (16,
40). Additional elaborations of this work could explore the sen-
sitivity of flux to (varying) resistive forces as well as cycle states
vulnerable to “escape” (such as a molecular motor falling off of
its track).
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